Installation
Apollo RAG supports multiple installation methods depending on your use case and infrastructure.
System Requirements
Minimum Requirements
- OS: Linux (Ubuntu 20.04+), macOS (12+), or Windows 10/11 with WSL2
- Python: 3.9 or higher
- RAM: 8GB minimum, 16GB recommended
- Storage: 10GB for models and dependencies
GPU Requirements (Optional but Recommended)
For optimal performance with GPU acceleration:
- NVIDIA GPU: Compute Capability 7.0+ (RTX 2000 series or newer)
- VRAM: 6GB minimum, 12GB+ recommended
- CUDA: 11.8 or higher
- cuDNN: 8.6 or higher
Apollo works on CPU-only systems but GPU acceleration provides 10x faster retrieval and embedding operations.
Installation Methods
Docker Installation (Recommended)
The fastest way to get Apollo running is with Docker Compose:
# Clone the repository
git clone https://github.com/yourusername/apollo-rag.git
cd apollo-rag
# Launch with Docker Compose (includes GPU support)
docker compose up -d
# Verify the installation
curl http://localhost:8000/healthThe Docker setup includes:
- ✅ FastAPI backend with GPU support
- ✅ Vector database (FAISS)
- ✅ Monitoring stack (Prometheus + Grafana)
- ✅ Redis cache
- ✅ Pre-configured models
Docker Compose automatically detects NVIDIA GPUs and enables GPU acceleration if available.
pip Installation
Install Apollo as a Python package:
# Create a virtual environment
python -m venv apollo-env
source apollo-env/bin/activate # On Windows: apollo-env\Scripts\activate
# Install Apollo with GPU support
pip install apollo-rag[gpu]
# Or CPU-only version
pip install apollo-rag
# Verify installation
apollo --versionOptional Dependencies:
# For PDF processing
pip install apollo-rag[pdf]
# For advanced monitoring
pip install apollo-rag[monitoring]
# Install all extras
pip install apollo-rag[all]Build from Source
For development or customization:
# Clone the repository
git clone https://github.com/yourusername/apollo-rag.git
cd apollo-rag
# Install in development mode
pip install -e ".[dev,gpu]"
# Run tests to verify
pytest tests/
# Start the development server
python -m apollo.server --devDevelopment Dependencies:
# Install pre-commit hooks
pre-commit install
# Install all development tools
pip install -e ".[dev,test,docs]"GPU Setup
CUDA Installation
If you have an NVIDIA GPU, install CUDA for optimal performance.
Ubuntu/Debian
# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb
sudo dpkg -i cuda-keyring_1.0-1_all.deb
sudo apt-get update
# Install CUDA Toolkit
sudo apt-get install cuda-toolkit-11-8
# Install cuDNN
sudo apt-get install libcudnn8
# Verify installation
nvidia-smi
nvcc --versionWindows
- Download CUDA Toolkit 11.8
- Download cuDNN 8.6
- Install both following the NVIDIA documentation
- Verify with PowerShell:
nvidia-smi
nvcc --versionmacOS
NVIDIA GPUs are not supported on modern macOS. Apollo can run on CPU or you can use Docker with GPU passthrough on a Linux host.
For Metal GPU acceleration (experimental):
pip install apollo-rag[metal]Verify Installation
After installation, verify everything is working:
# Check Apollo version
apollo --version
# Run diagnostics
apollo diagnose
# Check GPU availability
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
# Test with a simple query
curl -X POST http://localhost:8000/query \
-H "Content-Type: application/json" \
-d '{"query": "test query"}'Expected output:
{
"status": "success",
"version": "4.1.0",
"gpu_enabled": true,
"gpu_count": 1,
"gpu_name": "NVIDIA RTX 4090"
}Troubleshooting
GPU Not Detected
If CUDA is installed but Apollo doesn’t detect it:
# Check CUDA environment variables
echo $CUDA_HOME
echo $LD_LIBRARY_PATH
# Reinstall PyTorch with CUDA support
pip uninstall torch torchvision
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118Permission Errors (Docker)
If you get permission errors with Docker:
# Add your user to the docker group
sudo usermod -aG docker $USER
# Log out and back in, then restart Docker
sudo systemctl restart dockerImport Errors
If you encounter import errors:
# Clear pip cache and reinstall
pip cache purge
pip install --force-reinstall apollo-rag[gpu]Next Steps
Now that Apollo is installed:
- Configure your deployment
- Upload your first document
- Explore the API
Need help? Join our Discord community or check the troubleshooting guide.